AutLinOrd

Eric

June 24, 2025

Chapter 1

Bumps, blocks, and bubbles

Bubbles

Our goal here is to define the bubble relation on a linear order. Let X be a linear order.

Definition 1. Let $f: X \to X$ an automorphism. For any $x \in X$, the **orbit** of x under f is the set $\{f^n(x): n \in \mathbb{Z}\}$.

Definition 2. Let $f: X \to X$ an automorphism. For any $x \in X$, the **orbital** of x under f is the convex closure of the orbit of x under f.

Definition 3. A bump is an automorphism $f: X \to X$ with exactly one non-singleton orbital.

Definition 4. A **bounded bump** is a bump whose unique non-singleton orbital is either strictly bounded below or strictly bounded above.

Definition 5. We define a relation \sim_b on X as follows: $x \sim_b y$ if and only if there exists a bounded bump such that x and y are in its orbital or x = y.

Theorem 6. The relation \sim_b is reflexive and symmetric.

Proof. The definition is clearly reflexive and the definition is symmetric in x and y. \Box

Theorem 7. The relation \sim_b is convex.

Proof. Let $x \in X$. We want to show that the \sim_b -equivalence class of x is an interval. Let y and z be elements of X such that x < y < z and $x \sim_b z$. It cannot be that x = z and so we must have that $x, z \in O(f)$ for some bounded bump $f: X \to X$. Since O(f) is an interval and x < y < z, we have that $y \in O(f)$. Thus, $x \sim_b y$ and so we are done.

Theorem 8. The relation \sim_b is transitive.

Proof. Let x, y, and z be elements of X such that $x \sim_b y$ and $y \sim_b z$. If x = y or y = z, then we are done.