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Chapter 1

Groups

In this chapter, we prove Holder’s theorem for groups. We follow the proof in “Groups, Orders,
and Dynamics” by Deroin, Navas, and Rivas.

We choose an element of the ordered group 𝑓 and map it to 1 in the real numbers. Then for any
other element 𝑔 of the ordered group, we use 𝑓 to construct a sequence of rational approximations
of 𝑔. We map 𝑔 to the real number that is the limit of this sequence of approximations. We then
prove that this map is injective and order preserving.

1.1 Definitions
We begin with basic definitions of ordered groups.

Definition 1. A left ordered group 𝐺 is a group and a partial order such that for all 𝑥, 𝑦, 𝑧 ∈
𝐺, if 𝑥 ≤ 𝑦, then 𝑧 ∗ 𝑥 ≤ 𝑧 ∗ 𝑦.

Definition 2. A left linear ordered group 𝐺 is a left ordered group that is also a linear
order.

Definition 3. An Archimedean group is a left ordered group such that for any 𝑔, ℎ ∈ 𝐺
where 𝑔 ≠ 1, there exists an integer 𝑧 such that ℎ < 𝑔𝑧.

1.2 Approximation
In this section we assume that 𝐺 is a left linear ordered group that is Archimedean. Furthermore,
we assume we have an element 𝑓 ∈ 𝐺 such that 1 < 𝑓 .

Theorem 4. For any 𝑔 ∈ 𝐺 and 𝑝 ∈ ℕ, there exists an integer 𝑞 ∈ ℤ such that

𝑓𝑞 ≤ 𝑔𝑝 < 𝑓𝑞+1

Proof. Since 𝐺 is an Archimedean group, we can construct exponents 𝑙 and 𝑢 such that 𝑓 𝑙 <
𝑔𝑝 < 𝑓𝑢. Therefore, there must exist some integer 𝑞 which satisfies what we want.

Definition 5. We define a function 𝑞 ∶ 𝐺 → ℕ → ℝ using Theorem 4 such that for any 𝑔 ∈ 𝐺
and 𝑛 ∈ ℕ,

𝑓𝑞𝑔(𝑛) ≤ 𝑔𝑛 < 𝑓𝑞𝑔(𝑛)+1

1



Theorem 6. For any sequence 𝑎𝑛 of real numbers, if there exists 𝐶 ∈ ℝ such that for all 𝑚, 𝑛 ∈ ℕ
we have that

|𝑎𝑚+𝑛 − 𝑎𝑚 − 𝑎𝑛| ≤ 𝐶
then sequence 𝑎𝑛

𝑛 converges.

Proof. Not included here as the ideas are separate from this project.

Theorem 7. For any 𝑔 ∈ 𝐺 and 𝑎, 𝑏 ∈ ℕ, we have that

𝑓𝑞𝑔(𝑎)+𝑞𝑔(𝑏) ≤ 𝑔𝑎+𝑏 < 𝑓𝑞𝑔(𝑎)+𝑞𝑔(𝑏)+2

Proof. We know the following two things by the definition of 𝑞

𝑓𝑞𝑔(𝑎) ≤𝑔𝑎 < 𝑓𝑞𝑔(𝑎)+1

𝑓𝑞𝑔(𝑏) ≤𝑔𝑏 < 𝑓𝑞𝑔(𝑏)+1

And so it follows that
𝑓𝑞𝑔(𝑎)+𝑞𝑔(𝑏) ≤ 𝑔𝑎+𝑏 < 𝑓𝑞𝑔(𝑎)+𝑞𝑔(𝑏)+2

Theorem 8. For any 𝑔 ∈ 𝐺, the sequence 𝑞𝑔(𝑛)
𝑛 converges.

Proof. From Theorem 7, we have that

𝑞𝑔(𝑎) + 𝑞𝑔(𝑏) ≤ 𝑞𝑔(𝑎 + 𝑏) ≤ 𝑞𝑔(𝑎) + 𝑞𝑔(𝑏) + 1

and so
|𝑞𝑔(𝑎 + 𝑏) − 𝑞𝑔(𝑎) − 𝑞𝑔(𝑏)| ≤ 1

Therefore, by Theorem 6 with 𝐶 = 1, we have that the sequence 𝑞𝑔(𝑛)
𝑛 converges.

1.3 Map
We make the same assumptions as in the previous section. So we assume that 𝐺 is a left linear
ordered group that is Archimedean, 𝑓 ∈ 𝐺, and 1 < 𝑓 .

We now define the map from the 𝐺 to ℝ and prove its properties.

Definition 9. We define a map 𝜙∶ 𝐺 → ℝ by mapping 𝑔 to the real number that 𝑞𝑔(𝑛)
𝑛 converges

to as we know from Theorem 8.

Theorem 10. For all 𝑔1, 𝑔2 ∈ 𝐺 and 𝑝 ∈ ℕ,

𝑞𝑔1
(𝑝) + 𝑞𝑔2

(𝑝) ≤ 𝑞𝑔1𝑔2
(𝑝) ≤ 𝑞𝑔1

(𝑝) + 𝑞𝑔2
(𝑝) + 1

Proof. Let 𝑞1 = 𝑞𝑔1
(𝑝) and 𝑞2 = 𝑞𝑔2

(𝑝). Then we know that

𝑓𝑞1 ≤𝑔𝑝
1 < 𝑓𝑞1+1

𝑓𝑞2 ≤𝑔𝑝
2 < 𝑓𝑞2+1
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And so we also have the following two facts

𝑓𝑞1+𝑞2 ≤ 𝑔𝑝
1𝑔𝑝

2
𝑔𝑝

2𝑔𝑝
1 < 𝑓𝑞1+𝑞2+2

We look at the case where 𝑔1𝑔2 ≤ 𝑔2𝑔1. Then 𝑔𝑝
1𝑔𝑝

2 ≤ (𝑔1𝑔2)𝑝 ≤ 𝑔𝑝
2𝑔𝑝

1 . And so combined with
the previous facts, we have that

𝑓𝑞1+𝑞2 ≤ 𝑔𝑝
1𝑔𝑝

2 ≤ (𝑔1𝑔2)𝑝 ≤ 𝑔𝑝
2𝑔𝑝

1 < 𝑓𝑞1+𝑞2+2

Therefore,
𝑞1 + 𝑞2 ≤ 𝑞𝑔1𝑔2

(𝑝) ≤ 𝑞1 + 𝑞2 + 1
And so we are done. The case where 𝑔2𝑔1 ≤ 𝑔1𝑔2 follows similarly.

Theorem 11. The map 𝜙 is a homomorphism.

Proof. Let 𝑔1, 𝑔2 ∈ 𝐺. Then from Theorem 10 we have that

𝑞𝑔1
(𝑝) + 𝑞𝑔2

(𝑝) ≤ 𝑞𝑔1𝑔2
(𝑝) ≤ 𝑞𝑔1

(𝑝) + 𝑞𝑔2
(𝑝) + 1

And so since lim𝑝→∞
𝑞𝑔1 (𝑝)+𝑞𝑔2 (𝑝)

𝑝 = lim𝑝→∞
𝑞𝑔1 (𝑝)+𝑞𝑔2 (𝑝)+1

𝑝 , we have that

lim
𝑝→∞

𝑞𝑔1
(𝑝) + 𝑞𝑔2

(𝑝)
𝑝 = lim

𝑝→∞

𝑞𝑔1𝑔2(𝑝)
𝑝

Therefore, by the definition of 𝜙, we have shown that 𝜙(𝑔1) + 𝜙(𝑔2) = 𝜙(𝑔1𝑔2).
Theorem 12. For all 𝑔, ℎ ∈ 𝐺, if 𝑔 ≤ ℎ then 𝜙(𝑔) ≤ 𝜙(ℎ).
Proof. First, notice that since 𝑔 ≤ ℎ, then for all 𝑝 ∈ ℕ, 𝑞𝑔(𝑝) ≤ 𝑞ℎ(𝑝). Then from the definition
of 𝜙, it follows that 𝜙(𝑔) ≤ 𝜙(ℎ).
Theorem 13. We have that 𝜙(𝑓) = 1 where 𝑓 is our fixed positive element.

Proof. We have that for all 𝑛 ∈ 𝕟 that 𝑓𝑛 ≤ 𝑓𝑛 < 𝑓𝑛+1 and so 𝑞𝑓(𝑛) = 𝑛. Therefore, 𝜙(𝑓) =
1.

Theorem 14. The map 𝜙 is injective.

Proof. Since from Theorem 11 we have that 𝜙 is a homomorphism, it suffices to show that for
any 𝑔 ∈ 𝐺, if 𝜙(𝑔) = 0, then 𝑔 = 1.

Assume for the sake of contradiction that there exists 𝑔 ∈ 𝐺 such that 𝜙(𝑔) = 0 but 𝑔 is not
equal to 1. Then since 𝐺 is Archimedean, there exists an integer 𝑧 such that 𝑔𝑧 > 𝑓 . Therefore,
since by Theorem 13 we have that 𝜙(𝑓) = 1,

0 = 𝜙(𝑔) = 𝜙(𝑔)𝑧 = 𝜙(𝑔𝑧)
> 𝜙(𝑓) = 1

Contradiction.

Theorem 15. For all 𝑔, ℎ ∈ 𝐺, we have that 𝑔 ≤ ℎ if and only if 𝜙(𝑔) ≤ 𝜙(ℎ).
Proof. (⇒) This is Theorem 12.

(⇐) We have that 𝜙(𝑔) ≤ 𝜙(ℎ). Assume for the sake of contradiction that ℎ < 𝑔. Then by
Theorem 12, we know that 𝜙(ℎ) ≤ 𝜙(𝑔). Therefore, 𝜙(𝑔) = 𝜙(ℎ). And so by Theorem 14, we
know that 𝜙 is injective and so 𝑔 = ℎ. Contradiction.
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1.4 Holder’s Theorem
Theorem 16. If 𝐺 is a left linear ordered group that is Archimedean, then 𝐺 is isomorphic to
a subgroup of ℝ.

Proof. First, we look at the case where there exists a positive element 𝑓 in 𝐺. Given such an
element, we have an order preserving, injective homomorphism 𝜙. And so 𝐺 is isomorphic to the
image of 𝜙 which is a subgroup of ℝ.

If there does not exist a positive element in 𝐺, then 𝐺 is trivial and is isomorphic to the
trivial subgroup of ℝ.
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Chapter 2

Semigroups

We follow the paper “On ordered semigroups” by N. G. Alimov.
We show that if a a linear ordered cancel semigroup does not have anomalous pairs, then

there exists a larger Archimedean group containing it. Then from Holder’s theorem for groups,
that larger group is isomorphic to a subgroup of ℝ and so the smaller semigroup is isomorphic
to a subsemigroup of ℝ.

2.1 Definitions
Definition 17. A left ordered semigroup 𝑆 is a semigroup and a partial order such that for
all 𝑥, 𝑦, 𝑧 ∈ 𝑆, if 𝑥 ≤ 𝑦, then 𝑧 ∗ 𝑥 ≤ 𝑧 ∗ 𝑦.

Definition 18. A right ordered semigroup 𝑆 is a semigroup and a partial order such that
for all 𝑥, 𝑦, 𝑧 ∈ 𝑆, if 𝑥 ≤ 𝑦, then 𝑥 ∗ 𝑧 ≤ 𝑦 ∗ 𝑧.

Definition 19. An ordered semigroup 𝑆 is a left and right ordered semigroup.

Definition 20. An ordered cancel semigroup 𝑆 is an ordered semigroup such that for all
𝑎, 𝑏, 𝑐 ∈ 𝑆, if 𝑎 ∗ 𝑏 ≤ 𝑎 ∗ 𝑐 then 𝑏 ≤ 𝑐 and if 𝑏 ∗ 𝑎 ≤ 𝑐 ∗ 𝑎 then 𝑏 ≤ 𝑐.

Definition 21. A linear ordered semigroup is an ordered semigroup where its partial order
is a linear order.

Definition 22. A linear ordered cancel semigroup is an ordered cancel semigroup where
its partial order is a linear order.

Definition 23. An anomalous pair in a left ordered semigroup 𝑆 is a pair of elements 𝑎, 𝑏 ∈ 𝑆
such that for all positive 𝑛 ∈ ℕ, either

𝑎𝑛 < 𝑏𝑛 < 𝑎𝑛+1

or
𝑎𝑛 > 𝑏𝑛 > 𝑎𝑛+1

.

Intuitively, an anomalous pair represents a pair of elements that are infinitely close. If you
have two real numbers 𝑠 and 𝑟 such that 𝑠 < 𝑟, then as 𝑛 ∈ ℕ gets larger, 𝑛 ⋅ 𝑠 and 𝑛 ⋅ 𝑟 get
farther apart. However, for an anomalous pair, the elements always remain close to each other.
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Definition 24. An element 𝑎 of a left ordered semigroup 𝑆 is positive if for all 𝑥 ∈ 𝑆, 𝑎∗𝑥 > 𝑥.
Definition 25. An element 𝑎 of a left ordered semigroup 𝑆 is negative if for all 𝑥 ∈ 𝑆, 𝑎∗𝑥 < 𝑥.
Definition 26. An element 𝑎 of a left ordered semigroup 𝑆 is one if for all 𝑥 ∈ 𝑆, 𝑎 ∗ 𝑥 = 𝑥.
Definition 27. Let 𝑎 and 𝑏 be elements of a left ordered semigroup 𝑆 that are not one.

Then 𝑎 is said to be Archimedean with respect to 𝑏 if there exists an 𝑁 ∈ ℕ+ such that
for 𝑛 > 𝑁 , the inequality 𝑏 < 𝑎𝑛 holds if 𝑏 is positive, and the inequality 𝑏 > 𝑎𝑛 holds if 𝑏 is
negative.
Definition 28. A left ordered semigroup is Archimedean if any two of its elements of the
same sign are mutually Archimedean.
Definition 29. A left ordered semigroup 𝑆 has large differences if for all 𝑎, 𝑏 ∈ 𝑆, the two
following implications hold

• if 𝑎 is positive and 𝑎 < 𝑏, then there exists 𝑐 ∈ 𝑆 and 𝑛 ∈ ℕ+ such that 𝑐 is Archimedean
with respect to 𝑎 and 𝑎𝑛 ∗ 𝑐 ≤ 𝑏𝑛

• if 𝑎 is negative and 𝑏 < 𝑎, then there exists 𝑐 ∈ 𝑆 and 𝑛 ∈ ℕ+ such that 𝑐 is Archimedean
with respect to 𝑎 and 𝑎𝑛 ∗ 𝑐 ≥ 𝑏𝑛

Intuitively, this is saying if 𝑎 < 𝑏 then eventually 𝑎𝑛 is significantly smaller than 𝑏𝑛. Here
“significantly smaller” means that there is an element that is not infinitely small with respect to
𝑎 that separates 𝑎𝑛 and 𝑏.

2.2 Anomalous Pairs
Theorem 30. Each element 𝑎 of a linear ordered cancel semigroup 𝑆 is either positive, negative,
or one.
Proof. Let 𝑎 ∈ 𝑆 and 𝑏 ∈ 𝑆. Since the 𝑆 is a linear order we have one of the following cases.

The first case is that 𝑏 ∗ 𝑎 > 𝑏. Then for all 𝑥 ∈ 𝑆 we have that 𝑏 ∗ 𝑎 ∗ 𝑥 > 𝑏 ∗ 𝑥 and so
𝑎 ∗ 𝑥 > 𝑥. Therefore, 𝑎 is positive.

The second case is that 𝑏 ∗ 𝑎 < 𝑏. Then for all 𝑥 ∈ 𝑆 we have that 𝑏 ∗ 𝑎 ∗ 𝑥 < 𝑏 ∗ 𝑥 and so
𝑎 ∗ 𝑥 < 𝑥. Therefore, 𝑎 is negative.

The last case is that 𝑏 ∗ 𝑎 = 𝑏. Then for all 𝑥 ∈ 𝑆 we have that 𝑏 ∗ 𝑎 ∗ 𝑥 = 𝑏 ∗ 𝑥 and so
𝑎 ∗ 𝑥 = 𝑥. Therefore, 𝑎 is zero.

Theorem 31. If 𝑆 is a non-Archimedean linear ordered cancel semigroup, then there exists an
anomalous pair.
Proof. Since 𝑆 is non-Archimedean, there exists 𝑎, 𝑏 ∈ 𝑆 such that 𝑎 and 𝑏 have the sign and are
not mutually Archimedean.

First, we look at the case where 𝑎 and 𝑏 are positive. Then since they are not mutually
Archimedean, without loss of generality, for all 𝑛 ∈ ℕ+, 𝑎𝑛 < 𝑏.

Then we either have that 𝑎 ∗ 𝑏 ≤ 𝑏 ∗ 𝑎 or that 𝑏 ∗ 𝑎 ≤ 𝑎 ∗ 𝑏. In the first case, we have that

𝑎𝑛 + 𝑏𝑛 ≤ (𝑎 ∗ 𝑏)𝑛 ≤ 𝑏𝑛 + 𝑎𝑛

which means that, since 𝑎𝑛 < 𝑏,
𝑏𝑛 < (𝑎 ∗ 𝑏)𝑛 < 𝑏𝑛+1

And so 𝑏 and 𝑎 ∗ 𝑏 form an anomalous pair.
The other cases follow similarly.
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Theorem 32. A linear ordered cancel semigroup without anomalous pairs is an Archimedean
commutative semigroup.

Proof. Let 𝑎 and 𝑏 be elements of an ordered semigroup 𝑆. If either 𝑎 or 𝑏 is one, then they
commute.

We begin with the case that 𝑎 and 𝑏 are positive. If 𝑎 ∗ 𝑏 < 𝑏 ∗ 𝑎, then for all 𝑛 ∈ ℕ+, we have
that

(𝑎 ∗ 𝑏)𝑛+1 = 𝑎 ∗ (𝑏 ∗ 𝑎)𝑛 ∗ 𝑏
> (𝑏 ∗ 𝑎)𝑛 ∗ 𝑏
> (𝑏 ∗ 𝑎)𝑛

> (𝑎 ∗ 𝑏)𝑛

And so 𝑎 ∗ 𝑏 and 𝑏 ∗ 𝑎 form an anomalous pair.
The same for the case that 𝑏 ∗ 𝑎 < 𝑎 ∗ 𝑏. Therefore, we must have that 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎.
The case where 𝑎 and 𝑏 are negative follows similarly.
We now look at the case where 𝑎 is negative and 𝑏 is positive. If the element 1 exists and

𝑎 ∗ 𝑏 = 1, then 𝑎 ∗ 𝑏 ∗ 𝑎 = 𝑎 and so 𝑏 ∗ 𝑎 = 1. Therefore, 𝑎 and 𝑏 commute.
If 𝑎 ∗ 𝑏 is positive, then

(𝑎 ∗ 𝑏) ∗ (𝑎 ∗ 𝑏) > 𝑎 ∗ 𝑏
(𝑏 ∗ 𝑎) ∗ 𝑏 > 𝑏

𝑏 ∗ 𝑎 > 0

We already showed that positive elements commute and so

(𝑏 ∗ 𝑎) ∗ 𝑏 = 𝑏 ∗ (𝑏 ∗ 𝑎)

Now we look at the case where 𝑎 ∗ 𝑏 < 𝑏 ∗ 𝑎. Then we have that

(𝑎 ∗ 𝑏)2 = 𝑎 ∗ ((𝑏 ∗ 𝑎) ∗ 𝑏)
= 𝑎 ∗ (𝑏 ∗ (𝑏 ∗ 𝑎))
= (𝑎 ∗ 𝑏) ∗ (𝑏 ∗ 𝑎)
> (𝑎 ∗ 𝑏) ∗ (𝑎 ∗ 𝑏)
= (𝑎 ∗ 𝑏)2

Which is a contradiction. We get a similar contradiction in the case that 𝑏 ∗ 𝑎 < 𝑎 ∗ 𝑏. Therefore,
𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎.

The case where 𝑎 ∗ 𝑏 is negative follows similarly. The case where 𝑏 is negative and 𝑎 is
positive is symmetric.

Theorem 33. In a linear ordered cancel semigroup 𝑆, there are no anomalous pairs if and only
if there are large differences.

Proof. (⇒) If 𝑎 and 𝑏 are positive and 𝑎 < 𝑏, then we have that 𝑎𝑛 < 𝑏𝑛 for all 𝑛. Therefore,
there must exist an 𝑛 such that 𝑎𝑛+1 ≤ 𝑏𝑛 as otherwise 𝑎 and 𝑏 would form an anomalous pair.
Thus, the theorem is satisfied with 𝑐 = 𝑎.

Similarly if 𝑎 and 𝑏 are negatiave.
(⇐) We look first at the case where 𝑎 and 𝑏 are positive and 𝑎 < 𝑏. Then we have 𝑐 ∈ 𝑆

Archimedean with respect to 𝑎 and 𝑚 ∈ ℕ+ such that 𝑎𝑚 ∗ 𝑐 ≤ 𝑏𝑚.
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Therefore, for any 𝑛 ∈ ℕ+, either

(𝑎𝑚)𝑛 ∗ 𝑐𝑛 ≤ (𝑎𝑚 ∗ 𝑐)𝑛 ≤ (𝑏𝑚)𝑛

or
𝑐𝑛 ∗ (𝑎𝑚)𝑛 ≤ (𝑎𝑚 ∗ 𝑐)𝑛 ≤ (𝑏𝑚)𝑛

holds.
Since 𝑐 is Archimedean with respect to 𝑎, there exists an 𝑁 such that for all 𝑛 ≥ 𝑁 , 𝑎 < 𝑐𝑛.

Thus, for any 𝑛 ≥ 𝑁 , we get from the previous relations that

𝑎𝑚𝑛+1 ≤ 𝑏𝑚𝑛

and so 𝑎 and 𝑏 do not form an anomalous pair.
Similalry if 𝑎 and 𝑏 are negative.

2.3 Semigroup to Group
Theorem 34. If 𝑆 is a linear ordered cancel semigroup without anomalous pairs, then there
exists a linear ordered cancel commutative monoid 𝑀 without anomalous pairs such that 𝑆 is
isomorphic to a subsemigroup of 𝑀 .

Proof. We do casework on whether or not 𝑆 has an element that is one.
If 𝑆 has an element that is one then it is already a monoid. Furthermore, since it has no

anomalous pairs, by Theorem 32, it is commutative. And so we are done.
If 𝑆 does not have an element that is one, then we let 𝑀 be 𝑆 with one added. We define one

to be less than every positive element and greater than every negative element. By Theorem 32,
we know that 𝑆 is commutative and so 𝑀 is too. Furthermore, it is clear that 𝑀 has no
anomalous pairs still. Then 𝑆 is isomorphic to the subsemigroup of 𝑀 that is all its elements
except for the added one.

Theorem 35. Let 𝑆 be a linear ordered cancel semigroup without anomalous pairs such that
there exists a positive element of 𝑆. Then for all 𝑥 ∈ 𝑆, there exists a 𝑦 ∈ 𝑆 such that 𝑦 is
positive and 𝑥 ∗ 𝑦 is positive.

Similarly, if there exists a negative element of 𝑆 then for all 𝑥 ∈ 𝑆 there exists a 𝑦 ∈ 𝑆 such
that 𝑦 is negative and 𝑥 ∗ 𝑦 is negative.

Proof. We look at the positive case. If 𝑥 is positive then we are done as 𝑥 ∗ 𝑥 is positive.
Next we look at the case where 𝑥 is negative. Assume for the sake of contradiction that for

all 𝑦 ∈ 𝑆, if 𝑦 is positive then 𝑥∗𝑦 is negative. Let 𝑧 be a positive element we assumed existed in
𝑆. Then for all positive 𝑛 ∈ ℕ, we have that 𝑥 ∗ 𝑧𝑛+2 is negative. Recall that from Theorem 32
we have commutativity. From there we have an anomalous pair:

(𝑥 ∗ 𝑧)𝑛 = 𝑥𝑛 ∗ 𝑧𝑛 ≥ 𝑥𝑛

≥ 𝑥𝑛 ∗ (𝑥 ∗ 𝑧𝑛+2)
= (𝑥 ∗ 𝑧)𝑛+1 ∗ 𝑧 > (𝑥 ∗ 𝑧)𝑛+1

Contradiction. And similarly for the negative case.

Theorem 36. Let 𝑀 be a linear ordered cancel commutative monoid without anomalous pairs
and let 𝐺 be its Grothendieck group. If 𝑀 has a positive (negative) element, then for any element
𝑎
𝑏 ∈ 𝐺 where 𝑎, 𝑏 ∈ 𝑀 , there exist 𝑎′, 𝑏′ ∈ 𝑀 such that 𝑎′ and 𝑏′ are positive (negative) and
𝑎
𝑏 = 𝑎′

𝑏′ .
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Proof. Let 𝑎
𝑏 ∈ 𝐺 where 𝑎, 𝑏 ∈ 𝑀 . Since 𝑀 has a positive element, by Theorem 35, we have

𝑎2, 𝑏2 ∈ 𝑀 such that 𝑎 ∗ 𝑎2 and 𝑏 ∗ 𝑏2 are positive. Let 𝑎′ = 𝑎 ∗ 𝑎2 and 𝑏′ = 𝑏 ∗ 𝑏2. Then 𝑎
𝑏 = 𝑎′

𝑏′

and 𝑎′ and 𝑏′ are positive.
And similarly for the negative case.

Theorem 37. Let 𝑀 be a linear ordered cancel commutative monoid. If 𝑀 does not have
anomalous pairs, then its Grothendieck group is Archimedean.

Proof. If 𝑀 is trivial then we are done. Otherwise, it has a positive element of a negative element.
We look at the case where 𝑀 has a positive element 𝑡. We now want to show that the

Grothendieck group 𝐺 of 𝑀 is Archimedean. It suffices to show that for any positive 𝑔, ℎ ∈ 𝐺,
there exists an integer 𝑛 such that 𝑔𝑛 > ℎ. Since 𝑔, ℎ ∈ 𝐺, there exist 𝑔1, 𝑔2, ℎ1, ℎ2 ∈ 𝑀 such
that 𝑔 = 𝑔1

𝑔2
and ℎ = ℎ1

ℎ2
, and by Theorem 36, we can assume that 𝑔1, 𝑔2, ℎ1, and ℎ2 are positive.

Then since 𝑀 does not have anomalous pairs, we have by Theorem 32 that 𝑀 is Archimedean.
Since 𝑔1 and ℎ1 are positive and 𝑀 is Archimedean, there exists a positive 𝑁 ∈ ℕ such that for
all 𝑛 ≥ 𝑁 , 𝑔𝑛

2 > ℎ1. So in particular, we have that 𝑔𝑁
2 > ℎ1.

Notice that since 𝑔1
𝑔2

positive, we have that 𝑔2 < 𝑔1. And therefore, since 𝑀 does not have
anomalous pairs, there exists a positive natural number 𝑁1 such that 𝑔𝑁1+𝑁

2 < 𝑔𝑁1
1 .

We now claim that 𝑔𝑁1 > ℎ. This is equivalent to showing that 𝑔𝑁1
2 ∗ ℎ1 < ℎ2 ∗ 𝑔𝑁1

1 . And we
have that

𝑔𝑁1
2 ∗ ℎ1 = ℎ1 ∗ 𝑔𝑁1

2

< 𝑔𝑁
2 ∗ 𝑔𝑁1

2 = 𝑔𝑁1+𝑁
2

< 𝑔𝑁1
1

< ℎ1 ∗ 𝑔𝑁1
1

And so we are done.
The final case where 𝑀 has a negative element follows similarly.

Theorem 38. If 𝑆 is a linear ordered cancel semigroup that does not have anomalous pairs, then
there exists a linear ordered commutative group 𝐺 that is Archimedean such that 𝑆 is isomorphic
to a subsemigroup of 𝐺.

Proof. By Theorem 34, we have that 𝑆 is isomorphic to a subsemigroup of a linear ordered cancel
commutative monoid 𝑀 that does not have anomalous pairs.

We let 𝐺 be the Grothendieck group of 𝑀 . Then by Theorem 37 we know that 𝐺 is
Archimedean. Since 𝐺 is the Grothendieck group of 𝑀 , 𝑀 is isomorphic to a submonoid of
𝐺. Thus, we have that 𝑆 is isomorphic to a subsemigroup of 𝐺.

2.4 Holder’s Theorem
Theorem 39. Let 𝑆 be a linear ordered cancel semigroup without anomalous pairs. Then 𝑆 is
isomorphic to a subsemigroup of the real numbers.

Proof. By Theorem 38, there exists a linear ordered commutative Archimedean group 𝐺 such
that 𝑆 is isomorphic to a subsemigroup of 𝐺. By Theorem 16, 𝐺 is isomorphic to a subgroup of
ℝ. Therefore, 𝑆 is isomorphic to a subsemigroup of ℝ.
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