Documentation

AutLinOrd.Orbital.ElemOrbital

This file defines elem_orbit f x, which is the orbit of x under f. It then defines elem_orbital f x, the orbital of x under f, as the OrdClosure of the orbit of x under f. It then proves many key facts about the oribtal of x under f.

def elem_orbit {α : Type u_1} [LinearOrder α] (f : α ≃o α) (x : α) :
Set α

The orbit of x under an automorphism f.

Equations
Instances For
    theorem swap_between {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x y : α} (between : (∃ (l : ), (f ^ l) x y) ∃ (u : ), y (f ^ u) x) :
    (∃ (l : ), (f ^ l) y x) ∃ (u : ), x (f ^ u) y

    If y lies between powers of x under f, then x lies between powers of x under f.

    theorem mem_elem_orbit_iff {α : Type u_1} [LinearOrder α] (f : α ≃o α) (x y : α) :
    y elem_orbit f x ∃ (z : ), (f ^ z) x = y

    y is in the orbit of x under f if and only if there exists an integer z such that (f^z) x = y.

    theorem reflexive_elem_orbit {α : Type u_1} [LinearOrder α] (f : α ≃o α) (x : α) :

    x is in the orbit of x under f.

    theorem fix_orbit_eq {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x : α} (fix : f x = x) :

    If f x = x, then the orbit of x under f is {x}.

    def elem_orbital {α : Type u_1} [LinearOrder α] (f : α ≃o α) (x : α) :
    Set α

    The orbital of x under an automorphism f.

    Equations
    Instances For
      theorem elem_orbital_ordConnected {α : Type u_1} [LinearOrder α] (f : α ≃o α) (x : α) :

      The orbital of x under f is OrdConnected.

      theorem elem_orbit_subset_elem_orbital {α : Type u_1} [LinearOrder α] (f : α ≃o α) (x : α) :

      The orbit of x under f is a subset of the orbital of x under f.

      theorem mem_elem_orbital_iff {α : Type u_1} [LinearOrder α] (f : α ≃o α) (x y : α) :
      y elem_orbital f x (∃ (l : ), (f ^ l) x y) ∃ (u : ), y (f ^ u) x

      y is in the orbital of x under f if and only if there exists integers l and u such that (f^l) x ≤ y and y ≤ (f^u) x.

      theorem incr_mem_elem_orbital_strong {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x y : α} (incr : isIncreasingAt f x) {l u : } (hl : (f ^ l) x y) (hu : y (f ^ u) x) :
      ∃ (z : ), (f ^ z) x y y < (f ^ (z + 1)) x

      If f is increasing at x and y is upper and lower bounded by powers of x under f, then there exists an integer z such that (f ^ z) x ≤ y and y < (f ^ (z+1)) x.

      theorem decr_mem_elem_orbital_strong {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x y : α} (decr : isDecreasingAt f x) {l u : } (hl : (f ^ l) x y) (hu : y (f ^ u) x) :
      ∃ (z : ), (f ^ (z + 1)) x y y < (f ^ z) x

      If f is decreasing at x and y is upper and lower bounded by powers of x under f, then there exists an integer z such that (f ^ (z+1)) x ≤ y and y < (f ^ z) x.

      theorem mem_elem_orbital_mp_strong {α : Type u_1} [LinearOrder α] (f : α ≃o α) (x y : α) :
      y elem_orbital f xf x = y (∃ (z : ), (f ^ z) x y y < (f ^ (z + 1)) x) ∃ (z : ), (f ^ (z + 1)) x y y < (f ^ z) x

      If y is in the orbital of x under f, then either f x = y or there is an integer z such that y is between f ^ z and f ^ (z+1).

      theorem mem_elem_orbital_mpr_strong {α : Type u_1} [LinearOrder α] (f : α ≃o α) (x y : α) :
      (f x = y (∃ (z : ), (f ^ z) x y y < (f ^ (z + 1)) x) ∃ (z : ), (f ^ (z + 1)) x y y < (f ^ z) x) → y elem_orbital f x

      If f x = y or there is an integer z such that y is between f ^ z and f ^ (z+1), then y is in the orbital of x under f.

      theorem mem_elem_orbital_strong_iff {α : Type u_1} [LinearOrder α] (f : α ≃o α) (x y : α) :
      y elem_orbital f x f x = y (∃ (z : ), (f ^ z) x y y < (f ^ (z + 1)) x) ∃ (z : ), (f ^ (z + 1)) x y y < (f ^ z) x

      y is in the orbital of x under f if and only if either f x = y or there is an integer z such that y is between f ^ z and f ^ (z+1).

      theorem mem_elem_orbital_reflexive {α : Type u_1} [LinearOrder α] (f : α ≃o α) (x : α) :

      x is in the orbital of x under f.

      theorem mem_elem_orbital_symmetric {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x y : α} (y_mem : y elem_orbital f x) :

      If y is in the orbital of x under f, then x is in the orbital of y under f.

      theorem mem_elem_orbital_transitive {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x y z : α} (hxy : x elem_orbital f y) (hyz : y elem_orbital f z) :

      If x is in the orbital of y under f and y is in the orbital of z under f, then x is in the orbital of z under f.

      theorem mem_elem_orbital_orbit_between {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x y : α} (y_mem : y elem_orbital f x) {z : α} (z_mem_orbit : z elem_orbit f x) :
      (∃ (l : ), (f ^ l) y z) ∃ (u : ), z (f ^ u) y

      If y is in the orbital of x under f and z is in the orbit of x under f, then z is lower and upper bounded by powers of y.

      theorem mem_elem_orbital_eq {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x y : α} (y_mem : y elem_orbital f x) :

      If y is in the orbital of x under f, then the orbital of y under f is equal to the orbital of x under f.

      theorem pow_mem_elem_orbital {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x y : α} (z : ) (y_mem : y elem_orbital f x) :
      (f ^ z) y elem_orbital f x

      If y is in the orbital of x under f, then, for any integer z, (f^z) y is in the oribtal of x under f.

      theorem pow_mem_elem_orbital_one {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x y : α} (y_mem : y elem_orbital f x) :

      If y is in the orbital of x under f, then f y is in the orbital of x under f.

      theorem fix_orbital_eq {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x : α} (fix : f x = x) :

      If f x = x, then the orbital of x under f is {x}.

      theorem not_fix_orbital_not_singleton {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x : α} (not_fix : f x x) :

      If f x ≠ x, then the orbital of x under f is not {x}.

      theorem fix_iff_singleton_orbital {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x : α} :
      f x = x elem_orbital f x = {x}

      f x = x if and only if the orbital of x under f is {x}.

      theorem fix_mem_orbital_eq {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x y : α} (y_mem : y elem_orbital f x) (fix : f y = y) :
      x = y

      If y is in the orbital of x under f and f y = y, then x = y.

      theorem singleton_orbital_swap {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x y : α} (singleton_orbital : elem_orbital f x = {y}) :

      If the orbital of x under f is {y}, then it is {x}.

      theorem not_singleton_at_not_singleton_all {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x : α} (not_single : elem_orbital f x {x}) (y : α) :

      If the orbital of x under f is not {x}, then for any element y, the orbital of x under f is not {y}.

      theorem neq_orbitals_not_mem_orbital {α : Type u_1} [LinearOrder α] {f : α ≃o α} {x y : α} (neq_orbitals : elem_orbital f x elem_orbital f y) :
      xelem_orbital f y

      If the orbital of x under f is not equal to the orbital of y under f, then x is not in the orbital of y under f.