Documentation

Mathlib.Algebra.Algebra.Field

Facts about algebraMap when the coefficient ring is a field. #

theorem algebraMap.coe_inv {R : Type u_1} (A : Type u_2) [Semifield R] [DivisionSemiring A] [Algebra R A] (r : R) :
r⁻¹ = (↑r)⁻¹
theorem algebraMap.coe_div {R : Type u_1} (A : Type u_2) [Semifield R] [DivisionSemiring A] [Algebra R A] (r s : R) :
↑(r / s) = r / s
theorem algebraMap.coe_zpow {R : Type u_1} (A : Type u_2) [Semifield R] [DivisionSemiring A] [Algebra R A] (r : R) (z : ) :
↑(r ^ z) = r ^ z
theorem algebraMap.coe_ratCast (R : Type u_1) (A : Type u_2) [Field R] [DivisionRing A] [Algebra R A] (q : ) :
q = q