Documentation

Lean.Data.PrefixTree

inductive Lean.PrefixTreeNode (α : Type u) (β : Type v) (cmp : ααOrdering) :
Type (max u v)
Instances For
    instance Lean.instInhabitedPrefixTreeNode {α : Type u_1} {β : Type u_2} {cmp : ααOrdering} :
    Equations
    def Lean.PrefixTreeNode.empty {α : Type u_1} {β : Type u_2} {cmp : ααOrdering} :
    PrefixTreeNode α β cmp
    Equations
    Instances For
      @[inline]
      def Lean.PrefixTreeNode.insert {α : Type u_1} {β : Type u_2} (cmp : ααOrdering) (t : PrefixTreeNode α β cmp) (k : List α) (val : β) :
      PrefixTreeNode α β cmp
      Equations
      Instances For
        @[specialize #[]]
        def Lean.PrefixTreeNode.find? {α : Type u_1} {β : Type u_2} (cmp : ααOrdering) (t : PrefixTreeNode α β cmp) (k : List α) :
        Equations
        Instances For
          @[inline]
          def Lean.PrefixTreeNode.findLongestPrefix? {α : Type u_1} {β : Type u_2} (cmp : ααOrdering) (t : PrefixTreeNode α β cmp) (k : List α) :

          Returns the the value of the longest key in t that is a prefix of k, if any.

          Equations
          Instances For
            @[inline]
            def Lean.PrefixTreeNode.foldMatchingM {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_4} {σ : Type u_1} [Monad m] (cmp : ααOrdering) (t : PrefixTreeNode α β cmp) (k : List α) (init : σ) (f : βσm σ) :
            m σ
            Equations
            Instances For
              inductive Lean.PrefixTreeNode.WellFormed {α : Type u_1} (cmp : ααOrdering) {β : Type u_2} :
              PrefixTreeNode α β cmpProp
              Instances For
                def Lean.PrefixTree (α : Type u) (β : Type v) (cmp : ααOrdering) :
                Type (max u v)
                Equations
                Instances For
                  def Lean.PrefixTree.empty {α : Type u_1} {β : Type u_2} {p : ααOrdering} :
                  PrefixTree α β p
                  Equations
                  Instances For
                    instance Lean.instInhabitedPrefixTree {α : Type u_1} {β : Type u_2} {p : ααOrdering} :
                    Equations
                    instance Lean.instEmptyCollectionPrefixTree {α : Type u_1} {β : Type u_2} {p : ααOrdering} :
                    Equations
                    @[inline]
                    def Lean.PrefixTree.insert {α : Type u_1} {β : Type u_2} {p : ααOrdering} (t : PrefixTree α β p) (k : List α) (v : β) :
                    PrefixTree α β p
                    Equations
                    Instances For
                      @[inline]
                      def Lean.PrefixTree.find? {α : Type u_1} {β : Type u_2} {p : ααOrdering} (t : PrefixTree α β p) (k : List α) :
                      Equations
                      Instances For
                        @[inline]
                        def Lean.PrefixTree.findLongestPrefix? {α : Type u_1} {β : Type u_2} {p : ααOrdering} (t : PrefixTree α β p) (k : List α) :

                        Returns the the value of the longest key in t that is a prefix of k, if any.

                        Equations
                        Instances For
                          @[inline]
                          def Lean.PrefixTree.foldMatchingM {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_4} {p : ααOrdering} {σ : Type u_1} [Monad m] (t : PrefixTree α β p) (k : List α) (init : σ) (f : βσm σ) :
                          m σ
                          Equations
                          Instances For
                            @[inline]
                            def Lean.PrefixTree.foldM {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_4} {p : ααOrdering} {σ : Type u_1} [Monad m] (t : PrefixTree α β p) (init : σ) (f : βσm σ) :
                            m σ
                            Equations
                            Instances For
                              @[inline]
                              def Lean.PrefixTree.forMatchingM {m : TypeType u_1} {α : Type u_2} {β : Type u_3} {p : ααOrdering} [Monad m] (t : PrefixTree α β p) (k : List α) (f : βm Unit) :
                              Equations
                              Instances For
                                @[inline]
                                def Lean.PrefixTree.forM {m : TypeType u_1} {α : Type u_2} {β : Type u_3} {p : ααOrdering} [Monad m] (t : PrefixTree α β p) (f : βm Unit) :
                                Equations
                                Instances For