Documentation

Lean.Meta.CongrTheorems

  • fixed : CongrArgKind

    It is a parameter for the congruence theorem, the parameter occurs in the left and right hand sides.

  • fixedNoParam : CongrArgKind

    It is not a parameter for the congruence theorem, the theorem was specialized for this parameter. This only happens if the parameter is a subsingleton/proposition, and other parameters depend on it.

  • eq : CongrArgKind

    The lemma contains three parameters for this kind of argument a_i, b_i and eq_i : a_i = b_i. a_i and b_i represent the left and right hand sides, and eq_i is a proof for their equality.

  • cast : CongrArgKind

    The congr-simp theorems contains only one parameter for this kind of argument, and congr theorems contains two. They correspond to arguments that are subsingletons/propositions.

  • heq : CongrArgKind

    The lemma contains three parameters for this kind of argument a_i, b_i and eq_i : a_i ≍ b_i. a_i and b_i represent the left and right hand sides, and eq_i is a proof for their heterogeneous equality.

  • subsingletonInst : CongrArgKind

    For congr-simp theorems only. Indicates a decidable instance argument. The lemma contains two arguments [a_i : Decidable ...] [b_i : Decidable ...]

Instances For
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Computes CongrArgKinds for a simp congruence theorem.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Variant of getCongrSimpKinds for rewriting just argument 0. If it is possible to rewrite, the 0th CongrArgKind is .eq, and otherwise it is .fixed. This is used for the arg conv tactic.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def Lean.Meta.mkCongrSimpCore? (f : Expr) (info : FunInfo) (kinds : Array CongrArgKind) (subsingletonInstImplicitRhs : Bool := true) :

            Creates a congruence theorem that is useful for the simplifier and congr tactic.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def Lean.Meta.mkCongrSimp? (f : Expr) (subsingletonInstImplicitRhs : Bool := true) (maxArgs? : Option Nat := none) :

              Create a congruence theorem for f. The theorem is used in the simplifier.

              If subsingletonInstImplicitRhs = true, the rhs corresponding to [Decidable p] parameters is marked as instance implicit. It forces the simplifier to compute the new instance when applying the congruence theorem. For the congr tactic we set it to false.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                Returns true if s is of the form hcongr_<idx>

                Equations
                Instances For
                  Equations
                  Instances For
                    def Lean.Meta.mkHCongrWithArityForConst? (declName : Name) (levels : List Level) (numArgs : Nat) :

                    Similar to mkHCongrWithArity, but uses reserved names to ensure we don't keep creating the same congruence theorem over and over again.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      Similar to mkCongrSimp?, but uses reserved names to ensure we don't keep creating the same congruence theorem over and over again.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For