Maximal ideal of local rings #
We prove basic properties of the maximal ideal of a local ring.
@[simp]
theorem
IsLocalRing.eq_maximalIdeal
{R : Type u_1}
[CommSemiring R]
[IsLocalRing R]
{I : Ideal R}
(hI : I.IsMaximal)
:
The maximal spectrum of a local ring is a singleton.
Equations
- IsLocalRing.instUniqueMaximalSpectrum = { default := { asIdeal := IsLocalRing.maximalIdeal R, isMaximal := ⋯ }, uniq := ⋯ }
theorem
IsLocalRing.of_singleton_maximalSpectrum
{R : Type u_1}
[CommSemiring R]
[Subsingleton (MaximalSpectrum R)]
[Nonempty (MaximalSpectrum R)]
:
If the maximal spectrum of a ring is a singleton, then the ring is local.
theorem
IsLocalRing.le_maximalIdeal
{R : Type u_1}
[CommSemiring R]
[IsLocalRing R]
{J : Ideal R}
(hJ : J ≠ ⊤)
:
theorem
IsLocalRing.le_maximalIdeal_of_isPrime
{R : Type u_1}
[CommSemiring R]
[IsLocalRing R]
(p : Ideal R)
[hp : p.IsPrime]
:
An element x
of a commutative local semiring is not contained in the maximal ideal
iff it is a unit.
@[deprecated IsLocalRing.notMem_maximalIdeal (since := "2025-05-23")]
Alias of IsLocalRing.notMem_maximalIdeal
.
An element x
of a commutative local semiring is not contained in the maximal ideal
iff it is a unit.
theorem
IsLocalRing.maximalIdeal_le_jacobson
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(I : Ideal R)
:
theorem
IsLocalRing.jacobson_eq_maximalIdeal
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(I : Ideal R)
(h : I ≠ ⊤)
:
theorem
IsLocalRing.ker_eq_maximalIdeal
{R : Type u_1}
{K : Type u_3}
[CommRing R]
[IsLocalRing R]
[DivisionRing K]
(φ : R →+* K)
(hφ : Function.Surjective ⇑φ)
: