norm_num
extension for Real.sqrt
#
This module defines a norm_num
extension for Real.sqrt
and NNReal.sqrt
.
theorem
Tactic.NormNum.isNat_realSqrt
{x : ℝ}
{nx ny : ℕ}
(h : Mathlib.Meta.NormNum.IsNat x nx)
(hy : ny * ny = nx)
:
Mathlib.Meta.NormNum.IsNat (√x) ny
theorem
Tactic.NormNum.isNat_nnrealSqrt
{x : NNReal}
{nx ny : ℕ}
(h : Mathlib.Meta.NormNum.IsNat x nx)
(hy : ny * ny = nx)
:
theorem
Tactic.NormNum.isNNRat_nnrealSqrt_of_isNNRat
{x : NNReal}
{n sn d sd : ℕ}
(hn : sn * sn = n)
(hd : sd * sd = d)
(h : Mathlib.Meta.NormNum.IsNNRat x n d)
:
Mathlib.Meta.NormNum.IsNNRat (NNReal.sqrt x) sn sd
theorem
Tactic.NormNum.isNat_realSqrt_neg
{x : ℝ}
{nx : ℕ}
(h : Mathlib.Meta.NormNum.IsInt x (Int.negOfNat nx))
:
theorem
Tactic.NormNum.isNat_realSqrt_of_isRat_negOfNat
{x : ℝ}
{num denom : ℕ}
(h : Mathlib.Meta.NormNum.IsRat x (Int.negOfNat num) denom)
:
theorem
Tactic.NormNum.isNNRat_realSqrt_of_isNNRat
{x : ℝ}
{n sn d sd : ℕ}
(hn : sn * sn = n)
(hd : sd * sd = d)
(h : Mathlib.Meta.NormNum.IsNNRat x n d)
:
Mathlib.Meta.NormNum.IsNNRat (√x) sn sd
norm_num
extension that evaluates the function NNReal.sqrt
.
Equations
- One or more equations did not get rendered due to their size.