Basic ordered group facts #
This file proves some basic facts about ordered groups.
theorem
pos_exp_pos_pos
{α : Type u}
[LeftOrderedGroup α]
{x : α}
(pos_x : 1 < x)
{z : ℤ}
(pos_z : z > 0)
:
theorem
nonneg_exp_pos_nonneg
{α : Type u}
[LeftOrderedGroup α]
{x : α}
(pos_x : 1 < x)
{z : ℤ}
(pos_z : z ≥ 0)
:
theorem
pos_exp_neg_neg
{α : Type u}
[LeftOrderedGroup α]
{x : α}
(neg_x : x < 1)
{z : ℤ}
(pos_z : z > 0)
:
theorem
neg_exp_pos_neg
{α : Type u}
[LeftOrderedGroup α]
{x : α}
(pos_x : 1 < x)
{z : ℤ}
(neg_z : z < 0)
:
theorem
neg_exp_neg_pos
{α : Type u}
[LeftOrderedGroup α]
{x : α}
(neg_x : x < 1)
{z : ℤ}
(neg_z : z < 0)
:
theorem
pos_lt_exp_lt
{α : Type u}
[LeftOrderedGroup α]
{f : α}
(f_pos : 1 < f)
{a b : ℤ}
(f_lt : f ^ a < f ^ b)
:
Equations
- instLeftOrderedSemigroup = { toSemigroup' := instSemigroup'OfSemigroup, toPartialOrder := LeftOrderedGroup.toPartialOrder, mul_le_mul_left := ⋯ }
theorem
pos_neg_disjoint
{α : Type u}
[LeftOrderedGroup α]
:
Disjoint ↑(PositiveCone α) ↑(NegativeCone α)
Instances For
def
pos_normal_ordered
{α : Type u}
[LeftOrderedGroup α]
(pos_normal : normal_semigroup (PositiveCone α))
(a b : α)
:
A left ordered group whose positive cone is a normal semigroup is an ordered group.
Equations
- ⋯ = ⋯
Instances For
theorem
pos_exp_lt_lt
{α : Type u}
[LinearOrderedGroup α]
{f : α}
(f_pos : 1 < f)
{a b : ℤ}
(a_lt_b : a < b)
:
theorem
pos_exp_le_le
{α : Type u}
[LinearOrderedGroup α]
{f : α}
(f_pos : 1 < f)
{a b : ℤ}
(a_le_b : a ≤ b)
: