Documentation

OrderedSemigroups.OrderedGroup.Basic

Basic ordered group facts #

This file proves some basic facts about ordered groups.

theorem pnat_pow_eq_nat_pow {α : Type u} [Group α] (x : α) (n : ℕ+) :
x ^ n = x ^ n
theorem split_first_and_last_factor_of_product_group {α : Type u} [Group α] {a b : α} {n : } :
(a * b) ^ (n + 1) = a * (b * a) ^ n * b
theorem pos_exp_pos_pos {α : Type u} [LeftOrderedGroup α] {x : α} (pos_x : 1 < x) {z : } (pos_z : z > 0) :
1 < x ^ z
theorem nonneg_exp_pos_nonneg {α : Type u} [LeftOrderedGroup α] {x : α} (pos_x : 1 < x) {z : } (pos_z : z 0) :
1 x ^ z
theorem pos_exp_neg_neg {α : Type u} [LeftOrderedGroup α] {x : α} (neg_x : x < 1) {z : } (pos_z : z > 0) :
x ^ z < 1
theorem neg_exp_pos_neg {α : Type u} [LeftOrderedGroup α] {x : α} (pos_x : 1 < x) {z : } (neg_z : z < 0) :
x ^ z < 1
theorem neg_exp_neg_pos {α : Type u} [LeftOrderedGroup α] {x : α} (neg_x : x < 1) {z : } (neg_z : z < 0) :
1 < x ^ z
theorem pos_arch {α : Type u} [LeftOrderedGroup α] {x y : α} (pos_x : 1 < x) (pos_y : 1 < y) (z : ) :
x ^ z > yz > 0
theorem pos_lt_exp_lt {α : Type u} [LeftOrderedGroup α] {f : α} (f_pos : 1 < f) {a b : } (f_lt : f ^ a < f ^ b) :
a < b
Equations
def normal_semigroup {α : Type u} [Group α] (x : Subsemigroup α) :
Equations
Instances For
    def pos_normal_ordered {α : Type u} [LeftOrderedGroup α] (pos_normal : normal_semigroup (PositiveCone α)) (a b : α) :
    a b∀ (c : α), a * c b * c

    A left ordered group whose positive cone is a normal semigroup is an ordered group.

    Equations
    • =
    Instances For
      theorem comm_factor_le_group {α : Type u} [LinearOrderedGroup α] {a b : α} (h : a * b b * a) (n : ) :
      a ^ n * b ^ n (a * b) ^ n
      theorem comm_swap_le_group {α : Type u} [LinearOrderedGroup α] {a b : α} (h : a * b b * a) (n : ) :
      (a * b) ^ n (b * a) ^ n
      theorem comm_dist_le_group {α : Type u} [LinearOrderedGroup α] {a b : α} (h : a * b b * a) (n : ) :
      (b * a) ^ n b ^ n * a ^ n
      theorem pos_exp_lt_lt {α : Type u} [LinearOrderedGroup α] {f : α} (f_pos : 1 < f) {a b : } (a_lt_b : a < b) :
      f ^ a < f ^ b
      theorem pos_exp_le_le {α : Type u} [LinearOrderedGroup α] {f : α} (f_pos : 1 < f) {a b : } (a_le_b : a b) :
      f ^ a f ^ b