Documentation

AutLinOrd.Orbital.CombineAt

This files defines combine_at f g x which is an automorphism whose orbital at x is the union of that of f and g.

noncomputable def combine_at {α : Type u_1} [LinearOrder α] (f g : α ≃o α) (x : α) :
α ≃o α

Given automorphisms f and g and an element x, combine_at f g x is an automorphism whose orbital at x is the union of that of f and g.

Equations
Instances For
    theorem not_decr_combine_at {α : Type u_1} [LinearOrder α] (f g : α ≃o α) (x y : α) :
    y (combine_at f g x) y

    For any y, we have that y ≤ (combine_at f g x) y.

    theorem f_le_combine_at {α : Type u_1} [LinearOrder α] {f : α ≃o α} (g : α ≃o α) {x y : α} :

    For any y in the orbital of x under f, (orbital_at_non_decr f x) y ≤ (combine_at f g x) y.

    theorem inv_f_ge_combine_at {α : Type u_1} [LinearOrder α] {f : α ≃o α} (g : α ≃o α) {x y : α} :

    For any y in the orbital of x under f, (combine_at f g x).symm y ≤ (orbital_at_non_decr f x) y.

    theorem inv_g_ge_combine_at {α : Type u_1} [LinearOrder α] {g : α ≃o α} (f : α ≃o α) {x y : α} :

    For any y in the orbital of x under f, (combine_at f g x).symm y ≤ (orbital_at_non_decr g x) y.

    theorem g_le_combine_at {α : Type u_1} [LinearOrder α] {g : α ≃o α} (f : α ≃o α) {x y : α} :

    For any y in the orbital of x under f, (orbital_at_non_decr g x) y ≤ (combine_at f g x) y.

    theorem pow_f_le_combine_at {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} (n : ) :
    (orbital_at_non_decr f x ^ n) y (combine_at f g x ^ n) y

    For any y and natural number n, (orbital_at_non_decr f x)^n y ≤ (combine_at f g x)^n y.

    theorem pow_g_le_combine_at {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} (n : ) :
    (orbital_at_non_decr g x ^ n) y (combine_at f g x ^ n) y

    For any y and natural number n, (orbital_at_non_decr g x)^n y ≤ (combine_at f g x)^n y.

    theorem pow_f_inv_ge_combine_at {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} (n : ) :
    (combine_at f g x ^ (-n)) y (orbital_at_non_decr f x ^ (-n)) y

    For any y and natural number n, (combine_at f g x)^(-n) y ≤ (orbital_at_non_decr f x)^(-n) y.

    theorem pow_g_inv_ge_combine_at {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} (n : ) :
    (combine_at f g x ^ (-n)) y (orbital_at_non_decr g x ^ (-n)) y

    For any y and natural number n, (combine_at f g x)^(-n) y ≤ (orbital_at_non_decr g x)^(-n) y.

    theorem pow_f_le_pow_combine_le {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} {z : } (pow_f_le : (orbital_at_non_decr f x ^ z) x y) :
    ∃ (l : ), (combine_at f g x ^ l) x y

    If there exists an integer z such that (orbital_at_non_decr f x)^z x ≤ y, then there exists an integer l such that (combine_at f g x)^l x ≤ y.

    theorem pow_g_le_pow_combine_le {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} {z : } (pow_g_le : (orbital_at_non_decr g x ^ z) x y) :
    ∃ (l : ), (combine_at f g x ^ l) x y

    If there exists an integer z such that (orbital_at_non_decr g x)^z x ≤ y, then there exists an integer l such that (combine_at f g x)^l x ≤ y.

    theorem pow_f_ge_combine_ge {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} {z : } (pow_f_ge : y (orbital_at_non_decr f x ^ z) x) :
    ∃ (u : ), y (combine_at f g x ^ u) x

    If there exists an integer z such that y ≤ (orbital_at_non_decr f x)^z x, then there exists an integer u such that y ≤ (combine_at f g x)^u x.

    theorem pow_g_ge_combine_ge {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} {z : } (pow_g_ge : y (orbital_at_non_decr g x ^ z) x) :
    ∃ (u : ), y (combine_at f g x ^ u) x

    If there exists an integer z such that y ≤ (orbital_at_non_decr g x)^z x, then there exists an integer u such that y ≤ (combine_at f g x)^u x.

    theorem f_fix_combine_le {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} (fix : (orbital_at_non_decr f x) x = y) :
    ∃ (l : ), (combine_at f g x ^ l) x y

    If there exists a y such that (orbital_at_non_decr f x) x = y, then there exists an integer l such that (combine_at f g x)^l x ≤ y.

    theorem g_fix_combine_le {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} (fix : (orbital_at_non_decr g x) x = y) :
    ∃ (l : ), (combine_at f g x ^ l) x y

    If there exists a y such that (orbital_at_non_decr g x) x = y, then there exists an integer l such that (combine_at f g x)^l x ≤ y.

    theorem f_fix_combine_ge {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} (fix : (orbital_at_non_decr f x) x = y) :
    ∃ (u : ), y (combine_at f g x ^ u) x

    If there exists a y such that (orbital_at_non_decr f x) x = y, then there exists an integer u such that y ≤ (combine_at f g x)^u x.

    theorem g_fix_combine_ge {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} (fix : (orbital_at_non_decr g x) x = y) :
    ∃ (u : ), y (combine_at f g x ^ u) x

    If there exists a y such that (orbital_at_non_decr g x) x = y, then there exists an integer u such that y ≤ (combine_at f g x)^u x.

    theorem f_in_combine_map {α : Type u_1} [LinearOrder α] {f : α ≃o α} (g : α ≃o α) {x y : α} (y_mem : y elem_orbital f x) :

    If y is in the orbital of x under f, then y is in the orbital of x under combine_at f g x.

    theorem g_in_combine_map {α : Type u_1} [LinearOrder α] {g : α ≃o α} (f : α ≃o α) {x y : α} (y_mem : y elem_orbital g x) :

    If y is in the orbital of x under g, then y is in the orbital of x under combine_at f g x.

    theorem f_g_orbital_subset_combine_orbital {α : Type u_1} [LinearOrder α] (f g : α ≃o α) (x : α) :

    The union of the orbital of x under f and the orbital of x under g is a subset of the orbital of x under combine_at f g x.

    theorem combine_orbital_subset_f_g_orbital {α : Type u_1} [LinearOrder α] (f g : α ≃o α) (x : α) :
    theorem combine_orbital_eq_union {α : Type u_1} [LinearOrder α] (f g : α ≃o α) (x : α) :

    The orbital of x under combine_at f g x is equal to the union of the orbital of x under f and the orbital of x under g.

    theorem not_mem_orbital_at_combine_at_eq {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} (y_not_mem : yelem_orbital (combine_at f g x) x) :
    (combine_at f g x) y = y

    If y is not in the orbital of x under combine_at f g x, then (combine_at f g x) y = y.

    theorem not_mem_orbital_singleton {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} (y_not_mem : yelem_orbital (combine_at f g x) x) :

    If y is not in the orbital of x under (combine_at f g x), then the orbital of y under (combine_at f g x) is {y}.

    theorem fix_at_fix_all {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x : α} (fix : (combine_at f g x) x = x) (y : α) :
    (combine_at f g x) y = y

    If combine_at f g x fixes x, then it fixes everything.

    theorem not_singleton_at_not_singleton {α : Type u_1} [LinearOrder α] {f g : α ≃o α} {x y : α} (not_single : ¬elem_orbital (combine_at f g x) y = {y}) :

    If the orbital of y under combine_at f g x is not {y}, then the orbital of x under combine_at f g x is not {x}.